Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
J Med Microbiol ; 73(3)2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38530134

RESUMO

Introduction. Cryptococcal biofilms have been associated with persistent infections and antifungal resistance. Therefore, strategies, such as the association of natural compounds and antifungal drugs, have been applied for the prevention of biofilm growth. Moreover, the Caenorhabditis elegans pathogenicity model has been used to investigate the capacity to inhibit the pathogenicity of Cryptococcus neoformans sensu stricto.Hypothesis. Anthraquinones and antifungals are associated with preventing C. neoformans sensu stricto biofilm formation and disrupting these communities. Antraquinones reduced the C. neoformans sensu stricto pathogenicity in the C. elegans model.Aim. This study aimed to evaluate the in vitro interaction between aloe emodin, barbaloin or chrysophanol and itraconazole or amphotericin B against growing and mature biofilms of C. neoformans sensu stricto.Methodology. Compounds and antifungal drugs were added during biofilm formation or after 72 h of growth. Then, the metabolic activity was evaluated by the MTT reduction assay, the biomass by crystal-violet staining and the biofilm morphology by confocal laser scanning microscopy. C. neoformans sensu stricto's pathogenicity was investigated using the nematode C. elegans. Finally, pathogenicity inhibition by aloe emodin, barbarloin and chrysophanol was investigated using this model.Results. Anthraquinone-antifungal combinations affected the development of biofilms with a reduction of over 60 % in metabolic activity and above 50 % in biomass. Aloe emodin and barbaloin increased the anti-biofilm activity of antifungal drugs. Chrysophanol potentiated the effect of itraconazole against C. neoformans sensu stricto biofilms. The C. elegans mortality rate reached 76.7 % after the worms were exposed to C. neoformans sensu stricto for 96 h. Aloe emodin, barbaloin and chrysophanol reduced the C. elegans pathogenicity with mortality rates of 61.12 %, 65 % and 53.34 %, respectively, after the worms were exposed for 96 h to C. neoformans sensu stricto and these compounds at same time.Conclusion. These results highlight the potential activity of anthraquinones to increase the effectiveness of antifungal drugs against cryptococcal biofilms.


Assuntos
Antracenos , Criptococose , Cryptococcus neoformans , Animais , Antifúngicos/farmacologia , Caenorhabditis elegans , Itraconazol , Virulência , Antraquinonas/farmacologia , Biofilmes
2.
Biofouling ; 38(3): 286-297, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35450473

RESUMO

This study aimed to evaluate the effect of proteinase K on mature biofilms of dermatophytes, by assays of metabolic activity and biomass. In addition, the proteinase K-terbinafine and proteinase K-griseofulvin interactions against these biofilms were investigated by the checkerboard assay and scanning electron and confocal microscopy. The biofilms exposed to 32 µg ml-1 of proteinase K had lower metabolic activity and biomass, by 39% and 38%, respectively. Drug interactions were synergistic, with proteinase K reducing the minimum inhibitory concentration of antifungals against dermatophyte biofilms at a concentration of 32 µg ml-1 combined with 128-256 µg ml-1 of terbinafine and griseofulvin. Microscopic images showed a reduction in biofilms exposed to proteinase K, proteinase K-terbinafine and proteinase K-griseofulvin combinations. These findings demonstrate that proteinase K has activity against biofilms of dermatophytes, and the interactions of proteinase K with terbinafine and griseofulvin improve the activity of drugs against mature dermatophyte biofilms.


Assuntos
Antifúngicos , Arthrodermataceae , Antifúngicos/farmacologia , Biofilmes , Endopeptidase K/farmacologia , Griseofulvina/farmacologia , Testes de Sensibilidade Microbiana , Terbinafina/farmacologia
3.
Can J Microbiol ; 68(7): 493-499, 2022 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-35303412

RESUMO

Paraquat (1,10-dimethyl-4,4-bipyridinium dichloride; PQ) is a free-radical producing herbicide that affects cell membranes and can upset the environmental balance of microorganisms present in soil, such as Cryptococcus spp. This study aimed to evaluate the in vitro activity of PQ against Cryptococcus spp. in planktonic and biofilm forms, as well as the protective effect of antioxidant agents against the antifungal effect of PQ and the kinetics of melanin production in response to PQ. Susceptibility to PQ was evaluated by microdilution. Cryptococcus sp. strains exposed to PQ were grown in media with ascorbic acid (AA) and glutathione (GSH). Melanin production was assessed in the presence of l-3,4-dihydroxyphenylalanine (l-DOPA) + PQ. The minimum inhibitory concentration of PQ against Cryptococcus spp. ranged from 8 to 256 µg/mL. Furthermore, PQ reduced biofilm formation. AA and GSH restored the fungal growth of Cryptococcus spp. exposed to PQ. In addition, l-DOPA + PQ delayed melanin production by 24 and 48 h for C. deuterogattii and C. neoformans sensu lato, respectively, suggesting that PQ induces a fitness trade-off in melanin production. Taken together, our data suggest that the antifungal effect of PQ against Cryptococcus spp. possibly exerts selective pressures interfering with biofilm formation and melanin production by these yeasts.


Assuntos
Cryptococcus gattii , Cryptococcus neoformans , Herbicidas , Antifúngicos/metabolismo , Antifúngicos/farmacologia , Cryptococcus gattii/metabolismo , Cryptococcus neoformans/metabolismo , Herbicidas/metabolismo , Herbicidas/farmacologia , Levodopa/metabolismo , Levodopa/farmacologia , Melaninas/metabolismo , Melaninas/farmacologia , Testes de Sensibilidade Microbiana , Paraquat/metabolismo , Paraquat/farmacologia
4.
Microb Ecol ; 82(4): 1080-1083, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33723620

RESUMO

This study aimed to identify Candida spp. from agricultural soils cultivated with azole fungicides and investigate their susceptibility to clinical (fluconazole, itraconazole, voriconazole, and amphotericin B) and agricultural (tetraconazole and tebuconazole) antifungals in planktonic form. Additionally, Candida biofilm-forming ability and biofilm susceptibility to agricultural antifungals and voriconazole were analyzed. Species identification was performed by phenotypic and molecular assays. The susceptibility of planktonic cells was evaluated by the broth microdilution method. The biofilm metabolic activity was evaluated by the XTT reduction assay. The recovered Candida spp. were identified as C. parapsilosis sensu stricto (n = 14), C. albicans (n = 5), C. tropicalis (n = 2), C. fermentati (n = 1), and C. metapsilosis (n = 2). Minimum inhibitory concentration ranges for clinical and agricultural antifungals were ≤ 0.03-4 µg/mL and 1-128 µg/mL, respectively. Two and one C. albicans strains were considered non-wild type for voriconazole and fluconazole, respectively. All strains were biofilm producers. The minimum biofilm inhibitory concentration ranges for tetraconazole and tebuconazole were 128-> 1024 µg/mL, while for voriconazole was 512-> 1024 µg/mL. In summary, this study shows that non-wild type and azole-resilient biofilm-producing Candida species colonize agricultural soils cultivated with azole fungicides.


Assuntos
Candida , Fungicidas Industriais , Antifúngicos/farmacologia , Azóis/farmacologia , Biofilmes , Candida/genética , Candida albicans , Fungicidas Industriais/farmacologia , Testes de Sensibilidade Microbiana , Solo
5.
Ciênc. rural (Online) ; 51(7): e20200742, 2021. tab, graf
Artigo em Inglês | LILACS-Express | LILACS | ID: biblio-1180750

RESUMO

ABSTRACT: Studies on the fungal microbiota of reptiles and amphibians are necessary to better understand of host-microbe interactions and the establishment of fungal disease in these animals. However, these studies are limited. The present researchidentified yeasts from free-ranging reptiles and amphibians from the Caatinga biome andevaluated the virulence factors production, the antifungal susceptibility in planktonic and biofilm growth and the pathogenicity of Candida famata isolates. Twenty-nine isolates of the genera Candida, Cryptococcus and Rhodotorula were identified by phenotypic and/or molecular methods and production of hydrolytic enzymes in vitro by these genera of fungi was evaluated. In addition, susceptibility of planktonic cells and biofilms to azoles and amphotericin B was evaluated. The pathogenicity of C. famata, the most prevalent yeast species isolated, was evaluated using Caenorhabditis elegans model. C. famata was the most prevalent yeast in amphibian and reptilian microbiota. Phospholipase and protease production was observed in 18/29 and 11/29 of the yeast isolates, respectively, while 100% formed biofilms. Itraconazole presented high minimal inhibitory concentrations against C. famata and C. tropicalis. Amphotericin B reduced the biomass and metabolic activity of biofilms. C. famata induced the mortality of C. elegans. In conclusion, reptiles and amphibians are colonized by yeasts capable of producing important virulence factors, especially by Candida spp. that present low susceptibility to azoles which may result from imbalances in ecosystem. Finally, C. famata isolated from these animals presented high pathogenicity, showing the importance of the study of reptile and amphibians fungal microbiota.


RESUMO: Estudos sobre a microbiota fúngica de répteis e anfíbios são necessários para melhor compreender as interações hospedeiro-microrganismo e o estabelecimento de doenças fúngicas nesses animais. No entanto, esses estudos são limitados. O objetivo da presente pesquisa foi identificar leveduras isoladas de répteis e anfíbios do bioma Caatinga e avaliar a produção de fatores de virulência, a sensibilidade a antifúngicos no crescimento planctônico e de biofilme e a patogenicidade de Candida famata. Vinte e nove isolados dos gêneros Candida, Cryptococcus e Rhodotorula foram identificados por métodos fenotípicos e/ou moleculares e a produção de enzimas hidrolíticas in vitro por esses gêneros de fungos foi avaliada. Além disso, foi avaliada a suscetibilidade de células planctônicas e biofilmes a azólicos e anfotericina B. A patogenicidade de C. famata, a espécie de levedura isolada mais prevalente, foi avaliada usando Caenorhabditis elegans. C. famata foi a levedura mais prevalente na microbiota de anfíbios e répteis. A produção de fosfolipase e protease foi observada em 18/29 e 11/29 dos isolados de levedura, respectivamente, enquanto 100% formaram biofilmes. O itraconazol apresentou altas concentrações inibitórias mínimas contra C. famata e C. tropicalis. A anfotericina B reduziu a biomassa e atividade metabólica dos biofilmes. C. famata induziu a mortalidade de C. elegans. Em conclusão, répteis e anfíbios são colonizados por leveduras capazes de produzir importantes fatores de virulência, especialmente por cepas de Candida spp. que apresentam baixa suscetibilidade a azólicos que podem resultar de desequilíbrio no ecossistema. Por fim, C. famata isolados desses animais apresentaram alta patogenicidade, mostrando a importância do estudo da microbiota fúngica de répteis e anfíbios.

6.
Med Mycol ; 2020 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-32926150

RESUMO

The emergence of tolerant Cryptococcus neoformans strains to antifungals has been described. It has directed researchers to screen for new antimicrobial compounds. In this context, several plant-derived compounds, such as anthraquinones (aloe emodin, barbaloin, and chrysophanol), have been investigated for their antimicrobial properties. This study aimed to evaluate the in vitro effect of aloe emodin, barbaloin and chrysophanol on C. neoformans in vitro growth. In addition, the interaction between these anthraquinones and amphotericin B and itraconazole was evaluated. Initially, the minimum inhibitory concentrations (MIC) of these compounds were determined against 17 strains of C. neoformans by the broth microdilution method and then pharmacological interaction assays were performed with 15 strains by the checkerboard method. Aloe emodin, barbaloin, and chrysophanol showed minimum inhibitory concentrations of 236.82-473.65 µM (64-128 µg/mL), 153-306 µM (64-128 µg/ml) and ≥1007 µM (≥256 µg/ml), respectively. Furthermore, aloe emodin (11/15), barbaloin (13/15), and chrysophanol (12/15) showed pharmacological synergism (FICI < 0.5) with amphotericin B at subinhibitory concentrations (MIC/4). The itraconazole-aloe emodin interaction was additive (1/15) (0.5 < FICI < 1.0). The itraconazole-barbaloin interaction were synergistic (2/15) and additive (5/15); whereas itraconazole-chrysophanol interactions were additive (2/15). Anthraquinones, especially aloe emodin and barbaloin, present in vitro antifungal activity against C. neoformans and potentiate the antifungal activity of amphotericin B.

7.
Biofouling ; 36(7): 783-791, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32842796

RESUMO

This study describes an ex vivo model that creates an environment for dermatophyte biofilm growth, with features that resemble those of in vivo conditions, designing a new panorama for the study of antifungal susceptibility. Regarding planktonic susceptibility, MIC ranges were 0.125-1 µg ml-1 for griseofulvin and 0.000097-0.25 µg ml-1 for itraconazole and terbinafine. sMIC50 ranges were 2->512 µg ml-1 for griseofulvin and 0.25->64 µg ml-1 for itraconazole and terbinafine. CLSM images demonstrated a reduction in the amount of cells within the biofilm, but hyphae and conidia were still observed and biofilm biomass was maintained. SEM analysis demonstrated a retraction in the biofilm matrix, but fungal structures and water channels were preserved. These results show that ex vivo biofilms are more tolerant to antifungal drugs than in vitro biofilms, suggesting that environmental and nutritional conditions created by this ex vivo model favor biofilm growth and robustness, and hence drug tolerance.


Assuntos
Arthrodermataceae , Biofilmes , Preparações Farmacêuticas , Antifúngicos/farmacologia , Testes de Sensibilidade Microbiana
8.
J Med Microbiol ; 69(6): 838-843, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32427094

RESUMO

Introduction. Sporotrichosis, caused by species of the Sporothrix schenckii complex, is the most prevalent subcutaneous mycosis in many areas of Latin America. Statins are a class of drugs widely used for lowering high sterol levels through their action on 3-hydroxy-3-methylglutaryl-CoA reductase, a key enzyme in the synthesis of sterol.Aim. In this study, the antifungal activity of statins (simvastatin, atorvastatin, pravastatin) against planktonic cells and biofilms of S. schenckii complex species was evaluated, as well as the interaction of pravastatin with classical antifungals (amphotericin B, itraconazole, terbinafine).Methodology. Eighteen strains of Sporothrix species were used. The antifungal susceptibility assay was performed using the broth microdilution method. Mature biofilms were exposed to statins and metabolic activity was measured by the XTT reduction assay.Results. MICs of statins ranged from 8 to 512 µg ml-1 and from 8 to 256 µg ml-1 for filamentous and yeast forms, respectively. Regarding mature biofilms, MICs of 50 % inhibition (SMIC50) were 128 µg ml-1 for simvastatin and atorvastatin and >2048 µg ml-1 for pravastatin. MICs of 90 % inhibition (SMIC90) were 512 µg ml-1 for simvastatin and >2048 µg ml-1 for atorvastatin and pravastatin.Conclusion. These results highlight the antifungal and antibiofilm potential of statins against S. schenckii complex species.


Assuntos
Biofilmes/efeitos dos fármacos , Inibidores de Hidroximetilglutaril-CoA Redutases/farmacologia , Plâncton/efeitos dos fármacos , Sporothrix/efeitos dos fármacos , Antifúngicos/farmacologia , Testes de Sensibilidade Microbiana , Sporothrix/fisiologia
9.
J Med Microbiol ; 69(6): 830-837, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32459616

RESUMO

Introduction. Cryptococcus species are pathogens commonly associated with cases of meningoencephalitis in individuals who are immunosuppressed due to AIDS.Aim. The aim was to evaluate the effects of the antiretroviral darunavir alone or associated with fluconazole, 5-flucytosine and amphotericin B against planktonic cells and biofilms of Cryptococcus species.Methodology. Susceptibility testing of darunavir and the common antifungals against 12 members of the Cryptococcus neoformans/Cryptococcus gattii species complex was evaluated by broth microdilution. The interaction between darunavir and antifungals against planktonic cells was tested by a checkerboard assay. The effects of darunavir against biofilm metabolic activity and biomass were evaluated by the XTT reduction assay and crystal violet staining, respectively.Results. Darunavir combined with amphotericin B showed a synergistic interaction against planktonic cells. No antagonistic interaction was observed between darunavir and the antifungals used. All Cryptococcus species strains were strong biofilm producers. Darunavir alone reduced biofilm metabolic activity and biomass when added during and after biofilm formation (P<0.05). The combination of darunavir with antifungals caused a significant reduction in biofilm metabolic activity and biomass when compared to darunavir alone (P<0.05).Conclusion. Darunavir presents antifungal activity against planktonic cells of Cryptococcus species and synergism with amphotericin B. In addition, darunavir led to reduced biofilm formation and showed activity against mature biofilms of Cryptococcus species. Activity of the antifungals against mature biofilms was enhanced in the presence of darunavir.


Assuntos
Antifúngicos/farmacologia , Biofilmes/efeitos dos fármacos , Cryptococcus gattii/efeitos dos fármacos , Cryptococcus neoformans/efeitos dos fármacos , Darunavir/farmacologia , Anfotericina B/farmacologia , Células Cultivadas , Fluconazol/farmacologia , Testes de Sensibilidade Microbiana/métodos , Plâncton/microbiologia
10.
Biofouling ; 35(4): 392-400, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-31155952

RESUMO

The aim of this study was to establish an ex vivo model for dermatophyte biofilm growth, using hair from dogs and cats. Strains of Microsporum canis, M. gypseum, Trichophyton mentagrophytes and T. tonsurans were assessed for in vitro and ex vivo biofilm production. All T. mentagrophytes and T. tonsurans isolates and 8/12 M. canis and 1/7 M. gypseum isolates formed biofilms in vitro, while all tested isolates presented biofilm growth on ex vivo models. T. mentagrophytes and M. canis formed more homogeneous and better-structured biofilms with greater biomass production on cat hair but T. tonsurans formed more biofilm on dog hair. Confocal and scanning electron microscopy demonstrated fungal hyphae colonizing and perforating the hair shaft, abundant fungal conidia, biofilm extracellular matrix and biofilm water channels. The present study demonstrated an ex vivo model for the performance of studies on biofilm formation by dermatophytes, using dog and cat hair.


Assuntos
Biofilmes , Dermatomicoses , Cabelo , Microsporum/fisiologia , Trichophyton/fisiologia , Animais , Gatos , Cães , Hifas , Microscopia Eletrônica de Varredura , Estações do Ano
11.
Vet Microbiol ; 220: 47-52, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29885800

RESUMO

The yeast Malassezia pachydermatis is a component of the microbiota of dogs and cats, however it can cause otitis and seborrheic dermatitis in these animals. The objective of this study was to determine the antifungal susceptibility, and evaluate virulence and pathogenicity of 25 M. pachydermatis strains from animals. Susceptibility to ketoconazole, fluconazole, itraconazole, voriconazole, terbinafine, and amphotericin B was evaluated by broth microdilution assay. In addition, biofilm-forming ability, protease, phospholipase, hemolysin and melanin production and adhesion to epithelial cells by this yeast species were assessed. Finally, strain pathogenicity was investigated using the nematode Caenorhabditis elegans. Concerning the planktonic susceptibility, minimum inhibitory concentrations varied from <0.03 to>64 µg/mL for azole derivatives, 1 to >16 µg/mL for amphotericin B and 0.03 to 0.25 µg/mL for terbinafine. All strains were classified as strong biofilm producers, and ketoconazole, fluconazole and amphotericin B presented the best inhibitory effect against mature biofilms. All fungal isolates produced proteases, whereas 14/25 strains were positive for phospholipase production. Hemolytic activity was not observed and 18/25 strains showed dark pigmentation in the presence of L-DOPA. Regarding adhesion to epithelial cells, a low adhesion rate was observed in 10/12 evaluated strains. C. elegans mortality rate reached 95.9% after 96 h of exposure of the worms to M. pachydermatis. This yeast species produces important virulence factors and presents high pathogenicity, corroborating its clinical importance.


Assuntos
Antifúngicos/farmacologia , Dermatomicoses/veterinária , Malassezia/efeitos dos fármacos , Malassezia/patogenicidade , Animais , Aderência Bacteriana , Biofilmes/efeitos dos fármacos , Caenorhabditis elegans , Doenças do Gato/microbiologia , Gatos , Dermatomicoses/microbiologia , Doenças do Cão/microbiologia , Cães , Células Epiteliais/microbiologia , Fluconazol/farmacologia , Raposas/microbiologia , Itraconazol/farmacologia , Cetoconazol/farmacologia , Malassezia/enzimologia , Malassezia/isolamento & purificação , Testes de Sensibilidade Microbiana/métodos , Peptídeo Hidrolases/biossíntese , Fosfolipases/biossíntese , Virulência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...